
arXiv: 1208.4175
MapReduce has emerged as a popular method to process big data. In the past few years, however, not just big data, but fast data has also exploded in volume and availability. Examples of such data include sensor data streams, the Twitter Firehose, and Facebook updates. Numerous applications must process fast data. Can we provide a MapReduce-style framework so that developers can quickly write such applications and execute them over a cluster of machines, to achieve low latency and high scalability? In this paper we report on our investigation of this question, as carried out at Kosmix and WalmartLabs. We describe MapUpdate, a framework like MapReduce, but specifically developed for fast data. We describe Muppet, our implementation of MapUpdate. Throughout the description we highlight the key challenges, argue why MapReduce is not well suited to address them, and briefly describe our current solutions. Finally, we describe our experience and lessons learned with Muppet, which has been used extensively at Kosmix and WalmartLabs to power a broad range of applications in social media and e-commerce.
FOS: Computer and information sciences, Computer Science - Databases, Databases (cs.DB)
FOS: Computer and information sciences, Computer Science - Databases, Databases (cs.DB)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 89 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
