Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Molecular and Cellul...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular and Cellular Biochemistry
Article . 2013 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Depletion of histone demethylase KDM2A inhibited cell proliferation of stem cells from apical papilla by de-repression of p15INK4B and p27Kip1

Authors: Runtao, Gao; Rui, Dong; Juan, Du; Ping, Ma; Songlin, Wang; Zhipeng, Fan;

Depletion of histone demethylase KDM2A inhibited cell proliferation of stem cells from apical papilla by de-repression of p15INK4B and p27Kip1

Abstract

Mesenchymal stem cells (MSCs) are a reliable resource for tissue regeneration; although, the molecular mechanisms of their differentiation and proliferation are not clearly understood, which restricts the applications of MSCs. The histone demethylase, lysine (K)-specific demethylase 2A (KDM2A), and the mammalian paralog, lysine (K)-specific demethylase 2B (KDM2B), are evolutionarily conserved and ubiquitously expressed members of the JmjC-domain-containing histone demethylase family. A previous study determined that KDM2A and KDM2B can regulate the differentiation of MSCs, and KDM2B has been implicated in cell cycle regulation by de-repressing p15(INK4B) (cyclin-dependent kinase inhibitor 2B). It is not known whether KDM2A is involved in the cell proliferation of MSCs. Here, we show that depletion of KDM2A by short hairpin RNAs can inhibit cell proliferation and arrest cell cycle progression at the G1/S-phase in human stem cells from apical papilla (SCAPs). The effect of KDM2A on cell proliferation was found to be mediated through de-repression of the cyclin-dependent kinase inhibitors, p15(INK4B) and p27(Kip1) (cyclin-dependent kinase inhibitor 1B), in KDM2A knock-down SCAPs. Furthermore, chromatin immunoprecipitation assays demonstrated that silencing of KDM2A increased histone H3 Lysine 4 (H3K4) trimethylation at the p15(INK4B) and p27(Kip1) loci and regulated its expression. Together, our results indicate that KDM2A is a H3K4 demethylase that regulates cell proliferation through p15(INK4B) and p27(Kip1) in SCAPs.

Related Organizations
Keywords

Jumonji Domain-Containing Histone Demethylases, F-Box Proteins, Stem Cells, DNA Methylation, Histones, Gene Knockdown Techniques, Humans, Gene Silencing, RNA, Small Interfering, Promoter Regions, Genetic, Dental Papilla, Cells, Cultured, Cyclin-Dependent Kinase Inhibitor p27, Cell Proliferation, Cyclin-Dependent Kinase Inhibitor p15

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    45
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
45
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!