Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cell Scie...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cell Science
Article
License: CC BY
Data sources: UnpayWall
Journal of Cell Science
Article . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The C2 domains of the class I Rab11 family of interacting proteins target recycling vesicles to the plasma membrane

Authors: Andrew J, Lindsay; Mary W, McCaffrey;

The C2 domains of the class I Rab11 family of interacting proteins target recycling vesicles to the plasma membrane

Abstract

The Rab11 family of interacting proteins (Rab11-FIP) is a recently identified protein family composed of, to date, six members that interact with Rab11. They all share a highly homologous Rab11-binding domain (RBD) at their C-termini. However, apart from the RBD, they vary in their domain organization. Rab11-FIP3 and Rab11-FIP4 possess an ezrin-radixin-moesin (ERM) domain in their C-terminal half and EF hands in their N-terminal region. They have been termed class II Rab11-FIPs. The class I Rab11-FIPs, Rab coupling protein (RCP), Rip11 and Rab11-FIP2, each have a C2 phospholipid-binding domain near their N-termini. Although they are still membrane associated, truncation mutants of the class I Rab11-FIPs that lack their C2 domains display an altered subcellular distribution in vivo, indicating that this domain plays an important role in specifying their correct intracellular localization. To determine the phospholipids to which they bind, a protein phospholipid overlay assay was performed. Our results indicate that the class-I Rab11-FIPs bind preferentially to phosphatidylinositol-(3,4,5)-trisphosphate [PtdIns(3,4,5)P3] and the second messenger phosphatidic acid. Stimulation of PtdIns(3,4,5)P3 or phosphatidic acid synthesis results in the translocation of the Rab11-FIPs from a perinuclear location to the periphery of the cell. By contrast, the transferrin receptor does not translocate to the plasma membrane under these conditions. This translocation is dependent on the presence of the C2 domain, because class I Rab11-FIP green-fluorescent-protein fusions that lack the C2 domain cannot translocate to the plasma membrane. We propose that the C2 domains of the class I Rab11-FIPs function to target these proteins to `docking sites' in the plasma membrane that are enriched in PtdIns(3,4,5)P3 and phosphatidic acid.

Keywords

Epidermal Growth Factor, Sequence Homology, Amino Acid, Cell Membrane, Molecular Sequence Data, Phosphatidic Acids, Protein Structure, Tertiary, Protein Transport, Phosphatidylinositol Phosphates, Mutation, Phorbol Esters, Receptors, Transferrin, Tumor Cells, Cultured, Humans, Amino Acid Sequence, Carrier Proteins, HeLa Cells

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    93
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
93
Top 10%
Top 10%
Top 10%
hybrid