
arXiv: 1805.12166
We show that any language in nondeterministic time $\exp(\exp(\cdots \exp(n)))$, where the number of iterated exponentials is an arbitrary function $R(n)$, can be decided by a multiprover interactive proof system with a classical polynomial-time verifier and a constant number of quantum entangled provers, with completeness $1$ and soundness $1 - \exp(-C\exp(\cdots\exp(n)))$, where the number of iterated exponentials is $R(n)-1$ and $C>0$ is a universal constant. The result was previously known for $R=1$ and $R=2$; we obtain it for any time-constructible function $R$. The result is based on a compression technique for interactive proof systems with entangled provers that significantly simplifies and strengthens a protocol compression result of Ji (STOC'17). As a separate consequence of this technique we obtain a different proof of Slofstra's recent result (unpublished) on the uncomputability of the entangled value of multiprover games. Finally, we show that even minor improvements to our compression result would yield remarkable consequences in computational complexity theory and the foundations of quantum mechanics: first, it would imply that the class MIP* contains all computable languages; second, it would provide a negative resolution to a multipartite version of Tsirelson's problem on the relation between the commuting operator and tensor product models for quantum correlations.
57 pages, comments welcome
FOS: Computer and information sciences, Quantum Physics, Computer Science - Computational Complexity, FOS: Physical sciences, Computational Complexity (cs.CC), Quantum Physics (quant-ph), 004
FOS: Computer and information sciences, Quantum Physics, Computer Science - Computational Complexity, FOS: Physical sciences, Computational Complexity (cs.CC), Quantum Physics (quant-ph), 004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 13 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
