Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Plant and Cell Physi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Plant and Cell Physiology
Article . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cytokinin Response Factor 6 Negatively Regulates Leaf Senescence and is Induced in Response to Cytokinin and Numerous Abiotic Stresses

Authors: Paul J. Zwack; Bruce R. Robinson; Monica G. Risley; Aaron M. Rashotte;

Cytokinin Response Factor 6 Negatively Regulates Leaf Senescence and is Induced in Response to Cytokinin and Numerous Abiotic Stresses

Abstract

Cytokinin response factor 6 (CRF6) is an Arabidopsis AP2/ERF transcription factor which is transcriptionally induced by cytokinin. Cytokinin is known to delay leaf senescence in wild-type (WT) plants, for example in dark-incubated detached leaves. This response is mediated by the cytokinin receptor Arabidopsis histidine kinase receptor 3 (AHK3). Similar to ahk3 mutants, crf6 leaves show decreased sensitivity to this cytokinin effect. Leaves overexpressing CRF6 retain more Chl than those of the WT under these conditions without exogenous cytokinin. It therefore appears that an increase in expression of CRF6 downstream of the perception of cytokinin by AHK3 is involved in the delay of leaf senescence. Intact crf6 plants also begin to undergo monocarpic senescence sooner than WT plants. Interestingly, plants overexpressing CRF6 display a more extreme acceleration of development than crf6 mutants, suggesting that a specific expression level or localization of CRF6 is necessary to prevent premature senescence. Expression analyses indicate that CRF6 is highly expressed in the veins of mature leaves and that this expression decreases with age. CRF6 expression is shown to be induced by abiotic stress, in addition to increased cytokinin. Together, these findings suggest that CRF6 functions to regulate developmental senescence negatively and may have a similar role in response to stress. CRF6 may therefore be involved in fine-tuning the timing of developmental and stress-induced senescence. CRF6 functioning in negative regulation of senescence is significant in that it is the first process known to be regulated by cytokinin, in which a CRF can be placed specifically downstream of the cytokinin signaling pathway.

Related Organizations
Keywords

Cytokinins, Arabidopsis Proteins, Arabidopsis, Plant Development, Darkness, Models, Biological, Plant Leaves, Gene Expression Regulation, Plant, Stress, Physiological, Mutation, RNA, Messenger, Plant Vascular Bundle, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    103
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
103
Top 1%
Top 10%
Top 10%
bronze