Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Nature Biotechnologyarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature Biotechnology
Article . 2001 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Selective enhancement of gene transfer by steroid-mediated gene delivery

Authors: A, Rebuffat; A, Bernasconi; M, Ceppi; H, Wehrli; S B, Verca; M, Ibrahim; B M, Frey; +2 Authors

Selective enhancement of gene transfer by steroid-mediated gene delivery

Abstract

The incorporation of transgenes into the host cells' nuclei is problematic using conventional nonviral gene delivery technologies. Here we describe a strategy called steroid-mediated gene delivery (SMGD), which uses steroid receptors as shuttles to facilitate the uptake of transfected DNA into the nucleus. We use glucocorticoid receptors (GRs) as a model system with which to test the principle of SMGD. To this end, we synthesized and tested several bifunctional steroid derivatives, finally focusing on a compound named DR9NP, consisting of a dexamethasone backbone linked to a psoralen moiety using a nine-atom chemical spacer. DR9NP binds to the GR in either its free or DNA-crosslinked form, inducing the translocation of the GR to the nucleus. The expression of transfected DR9NP-decorated reporter plasmids is enhanced in dividing cells: expression of steroid-decorated reporter plasmids depends on the presence of the GR, is independent of the transactivation potential of the GR, and correlates with enhanced nuclear accumulation of the transgene in GR-positive cells. The SMGD effect is also observed in cells naturally expressing GRs and is significantly increased in nondividing cell cultures. We propose that SMGD could be used as a platform for selective targeting of transgenes in nonviral somatic gene transfer.

Related Organizations
Keywords

Cell Nucleus, Microscopy, Confocal, Dose-Response Relationship, Drug, Genetic Vectors, Active Transport, Cell Nucleus, Ficusin, Gene Transfer Techniques, DNA, Genetic Therapy, Ligands, Models, Biological, Adenoviridae, Cross-Linking Reagents, Genes, Reporter, Image Processing, Computer-Assisted, Animals, Humans, Cell Division, HeLa Cells, Plasmids

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    76
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
76
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!