Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Bacteriol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Bacteriology
Article . 1968 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Biosynthesis of Branched-Chain Amino Acids in Yeast: Regulation of Leucine Biosynthesis in Prototrophic and Leucine Auxotrophic Strains

Authors: T, Satyanarayana; H E, Umbarger; G, Lindegren;

Biosynthesis of Branched-Chain Amino Acids in Yeast: Regulation of Leucine Biosynthesis in Prototrophic and Leucine Auxotrophic Strains

Abstract

The first enzyme in the biosynthesis of leucine in yeast, α-isopropylmalate synthetase, is inhibited by l -leucine. In a mutant resistant to the analogue 5′,5′,5′-trifluoroleucine, the enzyme is markedly resistant to inhibition by l -leucine. Growth ing the presence of exogenous l -leucine results in repression of the second and third enzymes of the pathway. The first enzyme is not repressed unless both l -leucine and l -threonine are supplied in the medium. Comparison of levels of the remaining two enzymes in leucine auxotrophs grown under conditions of leucine excess and leucine limitation reveals deviations from the wild-type derepression pattern in some mutants. In some, repression of the synthetase by leucine alone was observed. In others, the repressibility of the dehydrogenase was lost. It is unlikely that these deviations were due to the same primary mutational event that caused leucine auxotrophy. No mutants were found in which an altered gene was recognized to be clearly responsible for the level of the leucine-forming enzymes.

Keywords

Ligases, Threonine, Saccharomyces, Leucine, Mutation, Malates, Valine, Enzyme Repression, Isoleucine, Isomerases, Oxidoreductases

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    65
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
65
Average
Top 1%
Top 10%
bronze