
Though custom deep learning (DL) hardware accelerators are attractive for making inferences in edge computing devices, their design and implementation remain a challenge. Open-source frameworks exist for exploring DL hardware accelerators. Gemmini is an open-source systolic array generator for agile DL accelerator exploration. This paper details the hardware/software components generated using Gemmini. The general matrix-to-matrix multiplication (GEMM) of different dataflow options, including output/weight stationary (OS/WS), was explored in Gemmini to estimate the performance relative to a CPU implementation. The Gemmini hardware was implemented on an FPGA device to explore the effect of several accelerator parameters, including array size, memory capacity, and the CPU/hardware image-to-column (im2col) module, on metrics such as the area, frequency, and power. This work revealed that regarding the performance, the WS dataflow offered a speedup of 3× relative to the OS dataflow, and the hardware im2col operation offered a speedup of 1.1× relative to the operation on the CPU. For hardware resources, an increase in the array size by a factor of 2 led to an increase in both the area and power by a factor of 3.3, and the im2col module led to an increase in area and power by factors of 1.01 and 1.06, respectively.
Gemmini, Chemical technology, deep learning, TP1-1185, hardware accelerators, Article, image-to-column, systolic array, GEMM, output/weight stationary dataflow, FPGA, open-source
Gemmini, Chemical technology, deep learning, TP1-1185, hardware accelerators, Article, image-to-column, systolic array, GEMM, output/weight stationary dataflow, FPGA, open-source
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
