Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Cellarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cell
Article . 1991 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
Cell
Article . 1992
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Induction in the developing compound eye of Drosophila: Multiple mechanisms restrict R7 induction to a single retinal precursor cell

Authors: D L, Van Vactor; R L, Cagan; H, Krämer; S L, Zipursky;

Induction in the developing compound eye of Drosophila: Multiple mechanisms restrict R7 induction to a single retinal precursor cell

Abstract

The development of the Drosophila R7 photoreceptor cell is determined by a specific inductive interaction between the R8 photoreceptor cell and a single neighboring precursor cell. This process is mediated by bride of sevenless (boss), a cell-surface bound ligand, and the sevenless (sev) tyrosine kinase receptor. The boss ligand is expressed specifically on the surface of the R8 cell, whereas the sev receptor is expressed on 5 cells contacting the developing R8 cell and other cells not in contact with R8. By altering the spatial and temporal expression of boss, we demonstrate that sev-expressing cells that do not contact R8 can assume an R7 cell fate. By contrast, the sev-expressing precursor cells to the R1-R6 photoreceptor cells that do contact R8 are nonresponsive to the inductive cue. Using the rough and Nspl mutations, we demonstrate that an early commitment to an R1-R6 cell fate blocks the pathway of sev activation in these cells.

Keywords

Embryonic Induction, Neurons, Membrane Glycoproteins, Receptors, Peptide, Gene Expression, Membrane Proteins, Receptor Protein-Tyrosine Kinases, Protein-Tyrosine Kinases, Eye, Ligands, Drosophila melanogaster, Animals, Drosophila Proteins, Photoreceptor Cells, Cloning, Molecular, Eye Proteins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    165
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
165
Top 10%
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!