Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archives of Biochemi...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Archives of Biochemistry and Biophysics
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Functional analysis of whether the glycine residue of the GMN motif of the Arabidopsis MRS2/MGT/CorA-type Mg2+ channel protein AtMRS2-11 is critical for Mg2+ transport activity

Authors: Sumio Ishijima; Rikako Shiomi; Ikuko Sagami;

Functional analysis of whether the glycine residue of the GMN motif of the Arabidopsis MRS2/MGT/CorA-type Mg2+ channel protein AtMRS2-11 is critical for Mg2+ transport activity

Abstract

Magnesium (Mg2+) plays a critical role in many physiological processes. The AtMRS2/MGT family, which contains nine Arabidopsis genes (and two pseudogenes), belongs to a eukaryotic subset of the CorA superfamily of divalent cation transporters. AtMRS2-11/MGT10 possesses the signature GlyMetAsn sequence (the GMN motif) conserved in the CorA superfamily; however, little is known about the role of the GMN motif in AtMRS2. Direct measurement using the fluorescent dye mag-fura-2 revealed that reconstituted AtMRS2-11 mediated rapid Mg2+ uptake into proteoliposomes at extraliposomal Mg2+ concentrations of 10 and 20 mM. Mutations in the GMN motif, G417 to A, S or V, did not show a significant change in Mg2+ uptake relative to the wild-type protein. The G417W mutant exhibited a significant increase in Mg2+ uptake. The functional complementation assay in Escherichia coli strain TM2 showed that E. coli cells expressing AtMRS2-11 with mutations in G of the GMN motif did not grow in LB medium without Mg2+ supplementation, while growth was observed in LB medium supplemented with 0.5 mM Mg2+; no difference was observed between the growth of TM2 cells expressing the AtMRS2-11 G417W mutant and that of cells expressing wild-type AtMRS2-11. These results suggested that the Mg2+ transport activity of the AtMRS2-11 GMN-motif mutants was low at low physiological Mg2+ concentrations; thus, the Gly residue is critical for Mg2+ transport, and the Mg2+ transport activity of the GMN-motif mutants was increased at high Mg2+ concentrations.

Related Organizations
Keywords

Arabidopsis Proteins, Amino Acid Motifs, Liposomes, Mutation, Arabidopsis, Glycine, Biological Transport, Magnesium, Cation Transport Proteins

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!