Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Australasian Physica...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Australasian Physical & Engineering Sciences in Medicine
Article . 2011 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A technique for calibrating a high dose rate 192Ir brachytherapy source

Authors: O. L. Fourie; T. G. Crabtree;

A technique for calibrating a high dose rate 192Ir brachytherapy source

Abstract

The reference air kerma rate of an 192Ir high dose rate brachytherapy source is determined based broadly on the International Atomic Energy Agency (IAEA) TECDOC 1274 code of practice. Since the primary standards dosimetry laboratory at the Australian Radiation Protection and Nuclear Safety Agency (ARPANSA) does not maintain a standard at 192Ir quality, the air kerma calibration coefficient of an IBA FC65-G Farmer type ionisation chamber is calculated using coefficients determined at 300 kV and 60Co qualities. The methodology proposed by Mainegra-Hing and Rogers [1] at 250 kV and 137Cs qualities is used. The validity of this approach is tested by performing Monte Carlo simulations to determine the chamber’s air kerma calibration coefficient at 192Ir quality. Very good agreement is obtained between values using these two methods. The reference air kerma rate is measured using the Farmer chamber in an in air jig. In addition the necessary correction factors are applied to the measured value. The reference air kerma rate determined in this way is compared to the value stated by the vendor of the 192Ir source on the source calibration certificate. Differences are with one exception less than 1%. It is concluded that because of the agreement between the values from the methodology used in this study and the source calibration certificate values this methodology can be used clinically.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!