Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Medical V...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Medical Virology
Article . 2008 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

PL‐100, a novel HIV‐1 protease inhibitor displaying a high genetic barrier to resistance: An in vitro selection study

Authors: Serge, Dandache; Craig A, Coburn; Maureen, Oliveira; Timothy J, Allison; M Katharine, Holloway; Jinzi J, Wu; Brent R, Stranix; +3 Authors

PL‐100, a novel HIV‐1 protease inhibitor displaying a high genetic barrier to resistance: An in vitro selection study

Abstract

AbstractThe development of new HIV inhibitors with distinct resistance profiles is essential in order to combat the development of multi‐resistant viral strains. A drug discovery program based on the identification of compounds that are active against drug‐resistant viruses has produced PL‐100, a novel potent protease inhibitor (PI) that incorporates a lysine‐based scaffold. A selection for resistance against PL‐100 in cord blood mononuclear cells was performed, using the laboratory‐adapted IIIb strain of HIV‐1, and it was shown that resistance appears to develop slower against this compound than against amprenavir, which was studied as a control. Four mutations in protease (PR) were selected after 25 weeks: two flap mutations (K45R and M46I) and two novel active site mutations (T80I and P81S). Site‐directed mutagenesis revealed that all four mutations were required to develop low‐level resistance to PL‐100, which is indicative of the high genetic barrier of the compound. Importantly, these mutations did not cause cross‐resistance to currently marketed PIs. In contrast, the P81S mutation alone caused hypersensitivity to two other PIs, saquinavir (SQV) and nelfinavir (NFV). Analysis of p55Gag processing showed that a marked defect in protease activity caused by mutation P81S could only be compensated when K45R and M46I were present. These data correlated well with the replication capacity (RC) of the mutant viruses as measured by a standard viral growth assay, since only viruses containing all four mutations approached the RC of wild type virus. X‐ray crystallography provided insight on the structural basis of the resistance conferred by the identified mutations. J. Med. Virol. 80:2053–2063, 2008. © 2008 Wiley‐Liss, Inc.

Keywords

Models, Molecular, Sulfonamides, Mutation, Missense, HIV Protease Inhibitors, Protein Structure, Tertiary, HIV Protease, Catalytic Domain, Drug Resistance, Viral, HIV-1, Leukocytes, Mononuclear, Mutagenesis, Site-Directed, Humans, Carbamates, Furans, Cells, Cultured

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!