Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2007 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Novel Conserved Nuclear Localization Signal Is Recognized by a Group of Yeast Importins

Authors: Thomas Fries; Susanne M. Bailer; Christian Betz; Stefanie Caesar; Kai Sohn; Gabriel Schlenstedt;

A Novel Conserved Nuclear Localization Signal Is Recognized by a Group of Yeast Importins

Abstract

Nucleo-cytoplasmic transport of proteins is mostly mediated by specific interaction between transport receptors of the importin beta family and signal sequences present in their cargo. While several signal sequences, in particular the classical nuclear localization signal (NLS) recognized by the heterodimeric importin alpha/beta complex are well known, the signals recognized by other importin beta-like transport receptors remain to be characterized in detail. Here we present the systematic analysis of the nuclear import of Saccharomyces cerevisiae Asr1p, a nonessential alcohol-responsive Ring/PHD finger protein that shuttles between nucleus and cytoplasm but accumulates in the nucleus upon alcohol stress. Nuclear import of Asr1p is constitutive and mediated by its C-terminal domain. A short sequence comprising residues 243-280 is sufficient and necessary for active targeting to the nucleus. Moreover, the nuclear import signal is conserved from yeast to mammals. In vitro, the nuclear localization signal of Asr1p directly interacts with the importins Kap114p, Kap95p, Pse1p, Kap123p, or Kap104p, interactions that are sensitive to the presence of RanGTP. In vivo, these importins cooperate in nuclear import. Interestingly, the same importins mediate nuclear transport of histone H2A. Based on mutational analysis and sequence comparison with a region mediating nuclear import of histone H2A, we identified a novel type of NLS with the consensus sequence R/KxxL(x)(n)V/YxxV/IxK/RxxxK/R that is recognized by five yeast importins and connects them into a highly efficient network for nuclear import of proteins.

Keywords

Cell Nucleus, Mammals, Saccharomyces cerevisiae Proteins, Ethanol, Nuclear Localization Signals, Active Transport, Cell Nucleus, Muscle Proteins, Saccharomyces cerevisiae, Karyopherins, Histones, Stress, Physiological, Mutation, Solvents, Animals, Connectin, Carrier Proteins, Protein Kinases, Adaptor Proteins, Signal Transducing

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Average
Average
Top 10%
gold