Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Acta Crystallographi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Acta Crystallographica Section F Structural Biology and Crystallization Communications
Article . 2009 . Peer-reviewed
License: IUCr Copyright and Licensing Policy
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Crystallization ofSaccharomyces cerevisiaeα-mannosidase, a cargo protein of the Cvt pathway

Authors: Y. Watanabe; N. N. Noda; K. Honbou; K. Suzuki; Y. Sakai; Y. Ohsumi; F. Inagaki;

Crystallization ofSaccharomyces cerevisiaeα-mannosidase, a cargo protein of the Cvt pathway

Abstract

Saccharomyces cerevisiae alpha-mannosidase (Ams1) is a cargo protein that is transported to the vacuole by the cytoplasm-to-vacuole targeting (Cvt) pathway during conditions of growth and by autophagy during conditions of starvation. After transport to the vacuole, Ams1 functions as a resident hydrolase. Ams1 has been overexpressed in the methylotrophic yeast Pichia pastoris, purified and crystallized in two crystal forms. Form I belongs to space group P2(1), with unit-cell parameters a = 145.7, b = 127.7, c = 164.0 A, beta = 101.5 degrees . Form II belongs to space group I222 or I2(1)2(1)2(1), with unit-cell parameters a = 127.9, b = 163.7, c = 291.5 A. Diffraction data were collected from these crystals to a resolution of 3.3 A for form I and of 2.6 A for form II using synchrotron radiation.

Keywords

Saccharomyces cerevisiae Proteins, Rotation, Data Collection, Statistics as Topic, Vesicular Transport Proteins, Saccharomyces cerevisiae, Crystallography, X-Ray, Pichia, Protein Transport, X-Ray Diffraction, alpha-Mannosidase, Vacuoles, Autophagy, Crystallization, Synchrotrons

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Average
Average
Average
bronze