Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Известия высших учеб...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

ESTIMATION OF THE DEPTH OF ANESTHESIA BY ELECTROENCEPHALOGRAM USING NEURAL NETWORKS

Authors: Mokhammed A. Al-Ghaili; Alexander N. Kalinichenko;

ESTIMATION OF THE DEPTH OF ANESTHESIA BY ELECTROENCEPHALOGRAM USING NEURAL NETWORKS

Abstract

Introduction. Monitoring of the depth of anesthesia during surgery is a complex task. Since electroencephalogram (EEG) signals contain valuable information about processes in the brain, EEG analysis is considered to be one of the most useful methods for study and assessment of the depth of anesthesia in clinical applications. Anesthetics affect the frequency composition of the EEG. EEG of awake persons, as a rule, contains mixed alpha and beta rhythms. Changes in the EEG, caused by the transition from the waking state to the state of deep anesthesia, manifest as a shift of the spectral components of the signal to the lower part of the frequency range. Anesthetics cause a whole range of neurophysiological changes, which cannot be correctly assessed with just one indicator. Objective. In order to describe complex processes during the transition from the waking state to the state of deep anesthesia adequately, it is required to propose a method for assessing the depth of anesthesia, using a comprehensive set of parameters reflecting changes in the EEG signal. The article presents the results of study the possibility of building a regression model based on artificial neural networks (ANN) to determine levels of anesthesia using a set of parameters calculated by EEG. Materials and methods. The authors of the article propose the method for assessing the level of anesthesia, based on the use of neural networks, which input parameters are time and frequency EEG parameters, namely: spectral entropy (SE); burst-suppression ratio (BSR); spectral edge frequency (SEF95) and log power ratio of the spectrum (RBR) for three pairs of frequency ranges. Results. The optimal parameters of ANN were determined, at which the highest level of regression is achieved between the calculated and the verified values of the anesthesia depth indices. Conclusion. In order to create a practical version of the algorithm, it is necessary to investigate further the noise stability of the proposed method and develop a set of algorithmic solutions, which ensure a reliable operation of the algorithm in the presence of noise.

Related Organizations
Keywords

anesthesia depth estimation, TK7800-8360, spectral entropy, eeg, bis-index, Electronics, artificial neural networks

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold