Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oncogenearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncogene
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oncogene
Article . 2002 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Oncogene
Article . 2002
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

DNA binding and 3′–5′ exonuclease activity in the murine alternatively-spliced p53 protein

Authors: Zippora, Shakked; Michael, Yavnilovitch; A Joseph, Kalb Gilboa; Naama, Kessler; Roland, Wolkowicz; Varda, Rotter; Tali E, Haran;

DNA binding and 3′–5′ exonuclease activity in the murine alternatively-spliced p53 protein

Abstract

In this study we show that the naturally occurring C-terminally alternative spliced p53 (referred to as AS-p53) is active as a sequence-specific DNA binding protein as well as a 3'-5'-exonuclease in the presence of Mg2+ ions. The two activities are positively correlated as the sequence-specific DNA target is more efficiently degraded than a non-specific target. In contrast, a mutated AS-p53 protein that is deficient in DNA binding lacks exonuclease activity. The use of modified p53 binding sites, where the 3'-phosphate is replaced by a phosphorothioate group, enabled the inhibition of DNA degradation under the binding conditions. We demonstrate that AS-p53 interacts with its specific DNA target by two distinct binding modes: a high-affinity mode characterized by a low-mobility protein-DNA complex at the nanomolar range, and a low-affinity mode shown by a high-mobility complex at the micromolar range. Comparison of the data on the natural and the modified p53 binding sites suggests that the high-affinity mode is related to AS-p53 function as a transcription factor and that the low-affinity mode is associated with its exonuclease activity. The implications of these findings to a specific cellular role of AS-p53 are discussed.

Keywords

Time Factors, Base Sequence, Electrophoretic Mobility Shift Assay, DNA, Binding, Competitive, Substrate Specificity, Alternative Splicing, Mice, Exodeoxyribonucleases, Escherichia coli, Animals, Tumor Suppressor Protein p53, Protein Binding

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Average
bronze