Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Naturearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Nature
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2024
License: CC BY NC ND
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research Collection
Research . 2023
License: CC BY NC
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1101/2023.1...
Article . 2023 . Peer-reviewed
Data sources: Crossref
ETH Zürich Research Collection
Research . 2023
Data sources: Datacite
Nature
Article . 2024
MPG.PuRe
Article . 2024
Data sources: MPG.PuRe
Nature
Article . 2024 . Peer-reviewed
versions View all 10 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An integrated transcriptomic cell atlas of human neural organoids

Authors: Zhisong He; Leander Dony; Jonas Simon Fleck; Artur Szałata; Katelyn X. Li; Irena Slišković; Hsiu-Chuan Lin; +18 Authors

An integrated transcriptomic cell atlas of human neural organoids

Abstract

Neural tissues generated from human pluripotent stem cells in vitro (known as neural organoids) are becoming useful tools to study human brain development, evolution and disease. The characterization of neural organoids using single-cell genomic methods has revealed a large diversity of neural cell types with molecular signatures similar to those observed in primary human brain tissue. However, it is unclear which domains of the human nervous system are covered by existing protocols. It is also difficult to quantitatively assess variation between protocols and the specific cell states in organoids as compared to primary counterparts. Single-cell transcriptome data from primary tissue and neural organoids derived with guided or un-guided approaches and under diverse conditions combined with large-scale integrative analyses make it now possible to address these challenges. Recent advances in computational methodology enable the generation of integrated atlases across many data sets. Here, we integrated 36 single-cell transcriptomics data sets spanning 26 protocols into one integrated human neural organoid cell atlas (HNOCA) totaling over 1.7 million cells. We harmonize cell type annotations by incorporating reference data sets from the developing human brain. By mapping to the developing human brain reference, we reveal which primary cell states have been generated in vitro, and which are under-represented. We further compare transcriptomic profiles of neuronal populations in organoids to their counterparts in the developing human brain. To support rapid organoid phenotyping and quantitative assessment of new protocols, we provide a programmatic interface to browse the atlas and query new data sets, and showcase the power of the atlas to annotate new query data sets and evaluate new organoid protocols. Taken together, the HNOCA will be useful to assess the fidelity of organoids, characterize perturbed and diseased states and facilitate protocol development in the future.

Keywords

Neurons, Pluripotent Stem Cells, Gene Expression Profiling, Models, Neurological, Brain, Datasets as Topic, Article, Organoids, Cohort Studies, User-Computer Interface, Atlases as Topic, Humans, Single-Cell Analysis, Nervous System Diseases, Transcriptome, Data Curation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    75
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
75
Top 1%
Top 10%
Top 1%
Green
hybrid