Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IOSR Journal of Comp...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IOSR Journal of Computer Engineering
Article . 2012 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Density Based Clustering Technique For Large Spatial Data Using Polygon Approach

Authors: Sauravjyoti Sarmah; Hrishav Bakul Barua; Dhiraj Kumar Das;

A Density Based Clustering Technique For Large Spatial Data Using Polygon Approach

Abstract

Finding meaningful patterns and useful trends in large datasets has attracted considerable interest recently, and one of the most widely studied problems in this area is the identification and formation of clusters, or densely populated regions in a dataset. Prior work does not adequately address the problem of large datasets and minimization of I/O costs. The objective of this paper is to present a Triangle-density based clustering technique, which we have named as TDCT, for efficient clustering of spatial data. This algorithm is capable of identifying embedded clusters of arbitrary shapes as well as multi-density clusters over large spatial datasets. The Polygon approach is being used to perform the clustering where the number of points inside a triangle (triangle density) of a polygon is calculated using barycentric formulae. This is because of the fact that partitioning of the data set can be performed more efficiently in triangular shape than in any other polygonal shape due to its smaller space dimension. The ratio of number of points between two triangles can be found out which forms the basis of nested clustering. Experimental results are reported to establish the superiority of the technique in terms of cluster quality and complexity.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Average
Top 10%
Average
bronze