Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oncogenearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncogene
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oncogene
Article . 1998 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Oncogene
Article . 1998
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Interaction of the pRB-family proteins with factors containing paired-like homeodomains

Authors: O'Neil Wiggan; Paul A. Hamel; Aiko Taniguchi-Sidle;

Interaction of the pRB-family proteins with factors containing paired-like homeodomains

Abstract

The specific loss of pRB or p107 together with p130 disrupts the normal development of only a very limited spectrum of tissues. These developmental defects have been attributed primarily to deregulation of E2F activity and consequent uncontrolled proliferation. We hypothesized, however, that the tissue-specific nature of these defects may also reflect deregulation of pRB-family associated factors that are specifically involved in determining cell fate. We report here that the pRB-family members interact with transcription factors which contain paired-like homeodomains such as MHox, Chx10 and Pax-3. The interaction between the pRB-family and the paired-like homeodomain proteins was initially identified in a yeast two-hybrid screen where the N-terminal portion of p130 was used to isolate interacting factors from an embryonic mouse library. This interaction was confirmed by in vitro binding and co-immunoprecipitation assays. We show further that co-expression of Pax-3 dependent pRB, p107 or p130 with Pax-3 causes repression of activated transcription from the c-met promoter. These data demonstrate that the pRB-family proteins can modulate the activity of factors which specifically control cell fate and/or differentiation as well as controlling cell cycle regulators.

Related Organizations
Keywords

Homeodomain Proteins, Transcriptional Activation, Mice, Binding Sites, COS Cells, Molecular Sequence Data, Tumor Cells, Cultured, Animals, Amino Acid Sequence, Retinoblastoma Protein

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    82
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
82
Top 10%
Top 10%
Top 10%
bronze