Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ AJP Gastrointestinal...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AJP Gastrointestinal and Liver Physiology
Article . 2005 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cholinergically stimulated gastric acid secretion is mediated by M3 and M5 but not M1 muscarinic acetylcholine receptors in mice

Authors: Takeshi Aihara; Makoto Mark Taketo; Yusuke Nakamura; Minoru Matsui; Susumu Okabe;

Cholinergically stimulated gastric acid secretion is mediated by M3 and M5 but not M1 muscarinic acetylcholine receptors in mice

Abstract

Muscarinic acetylcholine receptors play an important role in the regulation of gastric acid secretion stimulated by acetylcholine; nonetheless, the precise role of each receptor subtype (M1–M5) remains unclear. This study examined the involvement of M1, M3, and M5 receptors in cholinergic regulation of acid secretion using muscarinic receptor knockout (KO) mice. Gastric acid secretion was measured in both mice subjected to acute gastric fistula production under urethane anesthesia and conscious mice that had previously undergone pylorus ligation. M3 KO mice exhibited impaired gastric acid secretion in response to carbachol. Unexpectedly, M1 KO mice exhibited normal intragastric pH, serum gastrin and mucosal histamine levels, and gastric acid secretion stimulatied by carbachol, histamine, and gastrin. Pirenzepine, known as an M1-receptor antagonist, inhibited carbachol-stimulated gastric acid secretion in a dose-dependent manner in M1 KO mice as well as in wild-type (WT) mice, suggesting that the inhibitory effect of pirenzepine on gastric acid secretion is independent of M1-receptor antagonism. Notably, M5 KO mice exhibited both significantly lower carbachol-stimulated gastric acid secretion and histamine-secretory responses to carbachol compared with WT mice. RT-PCR analysis revealed M5-mRNA expression in the stomach, but not in either the fundic or antral mucosa. Consequently, cholinergic stimulation of gastric acid secretion is clearly mediated by M3 (on parietal cells) and M5 receptors (conceivably in the submucosal plexus), but not M1 receptors.

Keywords

Male, Mice, Knockout, Receptor, Muscarinic M3, Receptor, Muscarinic M5, Reverse Transcriptase Polymerase Chain Reaction, Receptor, Muscarinic M1, Stomach, Muscarinic Antagonists, Pirenzepine, Cholinergic Agonists, Gastric Acid, Mice, Animals, Carbachol, Female, RNA, Messenger

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
46
Top 10%
Top 10%
Top 10%
bronze