Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ The Journal of Immun...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Allergy and Clinical Immunology
Article . 2003 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
The Journal of Immunology
Article . 2003 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modular organization of the carboxy-terminal, globular head regions of human C1q A, B, and C chains

Authors: S.K. Gupta; B.C. Urban; M.S. Kojouharova; Kenneth B.M. Reid; Uday Kishore; M.V. Perdikoulis;

Modular organization of the carboxy-terminal, globular head regions of human C1q A, B, and C chains

Abstract

AbstractThe first step in the activation of the classical complement pathway, by immune complexes, involves the binding of the globular heads of C1q to the Fc regions of aggregated IgG or IgM. Located C-terminal to the collagen region, each globular head is composed of the C-terminal halves of one A (ghA), one B (ghB), and one C chain (ghC). To dissect their structural and functional autonomy, we have expressed ghA, ghB, and ghC in Escherichia coli as soluble proteins linked to maltose-binding protein (MBP). The affinity-purified fusion proteins (MBP-ghA, -ghB, and -ghC) bound differentially to heat-aggregated IgG and IgM, and also to three known C1q-binding peptides, derived from HIV-1, HTLV-I, and β-amyloid. In the ELISAs, the MBP-ghA bound to heat-aggregated IgG and IgM as well as to the HIV-1 gp41 peptide; the MBP-ghB bound preferentially to IgG rather than IgM, in addition to binding β-amyloid peptide, whereas the MBP-ghC showed a preference for IgM and the HTLV-I gp21 peptide. Both MBP-ghA and MBP-ghB also inhibited C1q-dependent hemolysis of IgG- and IgM-sensitized sheep erythrocytes. However, for IgM-coated erythrocytes, MBP-ghC was a better inhibitor of C1q than MBP-ghB. The recombinant forms of ghA, ghB, and ghC also bound specifically to apoptotic PBMCs. We conclude that the C1q globular head region is likely to have a modular organization, being composed of three structurally and functionally independent modules, which retains multivalency in the form of a heterotrimer. The heterotrimeric organization thus offers functional flexibility and versatility to the whole C1q molecule.

Keywords

Complement Inactivator Proteins, Human T-lymphotropic virus 1, Amyloid beta-Peptides, Complement C1q, Amino Acid Motifs, Molecular Sequence Data, Gene Products, env, Apoptosis, Hemolysis, HIV Envelope Protein gp41, Maltose-Binding Proteins, Peptide Fragments, Protein Structure, Tertiary, Protein Subunits, Immunoglobulin M, Immunoglobulin G, Humans, Amino Acid Sequence, Carrier Proteins, Protein Binding

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    111
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
111
Top 10%
Top 10%
Top 10%
bronze