
arXiv: 2011.13071
Many researchers assume that, for software analytics, "more data is better." We write to show that, at least for learning defect predictors, this may not be true. To demonstrate this, we analyzed hundreds of popular GitHub projects. These projects ran for 84 months and contained 3,728 commits (median values). Across these projects, most of the defects occur very early in their life cycle. Hence, defect predictors learned from the first 150 commits and four months perform just as well as anything else. This means that, at least for the projects studied here, after the first few months, we need not continually update our defect prediction models. We hope these results inspire other researchers to adopt a "simplicity-first" approach to their work. Some domains require a complex and data-hungry analysis. But before assuming complexity, it is prudent to check the raw data looking for "short cuts" that can simplify the analysis.
12 pages (To appear ICSE 2021)
Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Software Engineering, Computer Science - Machine Learning, Machine Learning (cs.LG)
Software Engineering (cs.SE), FOS: Computer and information sciences, Computer Science - Software Engineering, Computer Science - Machine Learning, Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
