Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Development Genes an...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Development Genes and Evolution
Article . 2020 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Gene expression analysis of three homeobox genes throughout early and late development of a feather star Anneissia japonica

Authors: Akihito Omori; Tomoko F. Shibata; Koji Akasaka;

Gene expression analysis of three homeobox genes throughout early and late development of a feather star Anneissia japonica

Abstract

Crinoids are considered as the most basal extant echinoderms. They retain aboral nervous system with a nerve center, which has been degraded in the eleutherozoan echinoderms. To investigate the evolution of patterning of the nervous systems in crinoids, we examined temporal and spatial expression patterns of three neural patterning-related homeobox genes, six3, pax6, and otx, throughout the development of a feather star Anneissia japonica. These genes were involved in the patterning of endomesodermal tissues instead of the ectodermal neural tissues in the early planktonic stages. In the stages after larval attachment, the expression of these genes was mainly observed in the podia and the oral nervous systems instead of the aboral nerve center. Our results indicate the involvement of these three genes in the formation of oral nervous system in the common ancestor of the echinoderms and suggest that the aboral nerve center is not evolutionally related to the brain of other bilaterians.

Related Organizations
Keywords

Homeodomain Proteins, Neurons, Otx Transcription Factors, PAX6 Transcription Factor, Gene Expression Regulation, Developmental, Homeobox Protein SIX3, Nerve Tissue Proteins, Nervous System, Evolution, Molecular, Larva, Animals, Eye Proteins, Body Patterning, Echinodermata

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!