Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Phytochemistryarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Phytochemistry
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Truncations of xyloglucan xylosyltransferase 2 provide insights into the roles of the N- and C-terminus

Authors: Alan T, Culbertson; Adrienne L, Smith; Matthew D, Cook; Olga A, Zabotina;

Truncations of xyloglucan xylosyltransferase 2 provide insights into the roles of the N- and C-terminus

Abstract

Xyloglucan is the most abundant hemicellulose in the primary cell wall of dicotyledonous plants. In Arabidopsis, three xyloglucan xylosyltransferases, XXT1, XXT2, and XXT5, participate in xylosylation of the xyloglucan backbone. Despite the importance of these enzymes, there is a lack of information on their structure and the critical residues required for substrate binding and transferase activity. In this study, the roles of different domains of XX2 in protein expression and catalytic activity were investigated by constructing a series of N- and C-terminal truncations. XXT2 with an N-terminal truncation of 31 amino acids after the predicted transmembrane domain showed the highest protein expression, but truncations of more than 31 residues decreased protein expression and catalytic activity. XXT2 constructs with C-terminal truncations showed increased protein expression but decreased activity, particularly for truncations of 44 or more amino acids. Site-directed mutagenesis was also used to investigate six positively charged residues near the C-terminus and found that four of the mutants showed decreased enzymatic activity. We conclude that the N- and C-termini of XXT2 have important roles in protein folding and enzymatic activity: the stem region (particularly the N-terminus of the catalytic domain) is critical for protein folding and the C-terminus is essential for enzymatic activity but not for protein folding.

Related Organizations
Keywords

Plant Stems, Cell Wall, Arabidopsis, Mutagenesis, Site-Directed, Xylans, Pentosyltransferases, Glucans

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!