Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ BMC Bioinformaticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Bioinformatics
Article . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Bioinformatics
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2020
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
BMC Bioinformatics
Article . 2020
Data sources: DOAJ
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Diversity-guided Lamarckian random drift particle swarm optimization for flexible ligand docking

Authors: Chao Li 0069; Jun Sun 0008; Vasile Palade;

Diversity-guided Lamarckian random drift particle swarm optimization for flexible ligand docking

Abstract

Abstract Background Protein-ligand docking has emerged as a particularly important tool in drug design and development, and flexible ligand docking is a widely used method for docking simulations. Many docking software packages can simulate flexible ligand docking, and among them, Autodock is widely used. Focusing on the search algorithm used in Autodock, many new optimization approaches have been proposed over the last few decades. However, despite the large number of alternatives, we are still lacking a search method with high robustness and high performance. Results In this paper, in conjunction with the popular Autodock software, a novel hybrid version of the random drift particle swarm optimization (RDPSO) algorithm, called diversity-guided Lamarckian RDPSO (DGLRDPSO), is proposed to further enhance the performance and robustness of flexible ligand docking. In this algorithm, a novel two-phase diversity control (2PDC) strategy and an efficient local search strategy are used to improve the search ability and robustness of the RDPSO algorithm. By using the PDBbind coreset v.2016 and 24 complexes with apo-structures, the DGLRDPSO algorithm is compared with the Lamarckian genetic algorithm (LGA), Lamarckian particle swarm optimization (LPSO) and Lamarckian random drift particle swarm optimization (LRDPSO). The experimental results show that the 2PDC strategy is able to enhance the robustness and search performance of the proposed algorithm; for test cases with different numbers of torsions, the DGLRDPSO outperforms the LGA and LPSO in finding both low-energy and small-RMSD docking conformations with high robustness in most cases. Conclusion The DGLRDPSO algorithm has good search performance and a high possibility of finding a conformation with both a low binding free energy and a small RMSD. Among all the tested algorithms, DGLRDPSO has the best robustness in solving both holo- and apo-structure docking problems with different numbers of torsions, which indicates that the proposed algorithm is a reliable choice for the flexible ligand docking in Autodock software.

Related Organizations
Keywords

QH301-705.5, Methodology Article, Computer applications to medicine. Medical informatics, Autodock software, R858-859.7, Proteins, Ligands, Random drift particle swarm optimization, Solis and Wets local search, Diversity control strategy, Drug Design, Humans, Flexible ligand docking, Search algorithms, Biology (General), Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Green
gold