Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The Journal of Nutri...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The Journal of Nutritional Biochemistry
Article . 2012 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Coordinate expression and localization of iron and zinc transporters explain iron–zinc interactions during uptake in Caco-2 cells: implications for iron uptake at the enterocyte

Authors: Vasuprada, Iyengar; Raghu, Pullakhandam; K Madhavan, Nair;

Coordinate expression and localization of iron and zinc transporters explain iron–zinc interactions during uptake in Caco-2 cells: implications for iron uptake at the enterocyte

Abstract

Iron and zinc have diverse and important physiological functions. Yet, the mechanism of their absorption at the intestine remains controversial and is confounded by the fact that many studies have shown, to varying extents, that they inhibit the absorption of each other. We have studied the expression of iron and zinc transporters and storage proteins, and their regulation, in Caco-2 cells, an established enterocyte model, under normal culture conditions and under conditions of iron and zinc depletion and supplementation using a combination of immunoblotting, confocal microscopy and reverse transcriptase polymerase chain reaction. We show that divalent metal transporter-1 (DMT-1) delocalizes from the plasma membrane upon iron or zinc depletion, but its apical abundance increases with zinc supplementation. This translocation of DMT-1 coincides with an increase in iron uptake upon zinc supplementation, as previously reported by us. FPN-1 expression increases upon zinc supplementation and decreases with iron or zinc depletion, effluxing the excess sequestered iron and thus maintaining cellular iron homeostasis. Zinc influx transporters Zip-1 and Zip-14 and efflux transporters ZnT-1 and ZnT-4 are coordinately regulated under conditions of zinc supplementation and depletion to ensure cellular zinc homeostasis. We have previously reported that iron uptake can entail two transporters and that zinc noncompetitively inhibits iron uptake in Caco-2 cells. We now provide evidence that this inhibition is independent of DMT-1 and that Zip-14 may be a relevant iron transporter. These new observations provide experimental support to this two-transporter model of iron uptake and give mechanistic insight to iron-zinc interactions during uptake at the enterocyte.

Keywords

Microscopy, Confocal, Iron, Cell Membrane, Cell Polarity, Protein Transport, Zinc, Ferroportin, Enterocytes, Gene Expression Regulation, Intestinal Absorption, Humans, RNA, Messenger, Caco-2 Cells, Cation Transport Proteins, Iron, Dietary, Chelating Agents

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    42
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
42
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!