
Given four distinct vertices s1,s2,t1, and t2 of a graph G, the 2-disjoint paths problem is to determine two disjoint paths, p1 from s1 to t1 and p2 from s2 to t2, if such paths exist. Disjoint can mean vertex- or edge-disjoint. Both, the edge- and the vertex-disjoint version of the problem, are NP-hard in the case of directed graphs. For undirected graphs, we show that the O(mn)-time algorithm of Shiloach can be modified to solve the 2-vertex-disjoint paths problem in only O(n + mα(m,n)) time, where m is the number of edges in G, n is the number of vertices in G, and where α denotes the inverse of the Ackermann function. Our result also improves the running time for the 2-edge-disjoint paths problem on undirected graphs as well as the running times for the 2-vertex- and the 2-edge-disjoint paths problem on dags.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 30 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
