Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Theory of Computing ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Theory of Computing Systems
Article . 2005 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2004 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Solving the 2-Disjoint Paths Problem in Nearly Linear Time

Authors: Torsten Tholey;

Solving the 2-Disjoint Paths Problem in Nearly Linear Time

Abstract

Given four distinct vertices s1,s2,t1, and t2 of a graph G, the 2-disjoint paths problem is to determine two disjoint paths, p1 from s1 to t1 and p2 from s2 to t2, if such paths exist. Disjoint can mean vertex- or edge-disjoint. Both, the edge- and the vertex-disjoint version of the problem, are NP-hard in the case of directed graphs. For undirected graphs, we show that the O(mn)-time algorithm of Shiloach can be modified to solve the 2-vertex-disjoint paths problem in only O(n + mα(m,n)) time, where m is the number of edges in G, n is the number of vertices in G, and where α denotes the inverse of the Ackermann function. Our result also improves the running time for the 2-edge-disjoint paths problem on undirected graphs as well as the running times for the 2-vertex- and the 2-edge-disjoint paths problem on dags.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    30
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
30
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!