Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Geneticsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article . 2000 . Peer-reviewed
License: OUP Standard Publication Reuse
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Genetics
Article
Data sources: UnpayWall
Genetics
Article . 2000
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The N-terminal BTB/POZ Domain and C-Terminal Sequences Are Essential for Tramtrack69 to Specify Cell Fate in the Developing Drosophila Eye

Authors: Y, Wen; D, Nguyen; Y, Li; Z C, Lai;

The N-terminal BTB/POZ Domain and C-Terminal Sequences Are Essential for Tramtrack69 to Specify Cell Fate in the Developing Drosophila Eye

Abstract

Abstract The BTB/POZ (broad complex Tramtrack bric-a-brac/Pox virus and zinc finger) domain is an evolutionarily conserved protein-protein interaction motif. Many BTB-containing proteins are transcriptional regulators involved in a wide range of developmental processes. However, the significance of the BTB domain in development has not been evaluated. Here we present evidence that overexpression of the Tramtrack69 (Ttk69) protein not only blocks neuronal photoreceptor differentiation but also promotes nonneuronal cone cell specification in early Drosophila eye development. We show that the BTB domain is essential for Ttk69 function and single amino acid changes in highly conserved residues in this domain abolish Ttk69 activity. Interestingly, the Ttk69 BTB can be substituted by the BTB of the human Bcl-6 protein, suggesting that BTB function has been conserved between Drosophila and humans. We found that the Ttk69 BTB domain is critical for mediating interaction with the Drosophila homolog of C-terminal-binding protein (dCtBP) in vitro, and dCtBP− mutations genetically interact with ttk69. Furthermore, the C-terminal region downstream of the DNA-binding zinc fingers is shown to be essential for Ttk69 function. A dCtBP consensus binding motif in the C terminus appears to contribute to Ttk69 activity, but it cannot be fully responsible for the function of the C terminus.

Related Organizations
Keywords

Male, Neurons, Genes, Insect, Eye, Biological Evolution, Protein Structure, Tertiary, Repressor Proteins, Phenotype, Mutation, Animals, Drosophila Proteins, Humans, Insect Proteins, Drosophila, Female, Photoreceptor Cells, Invertebrate, Transcription Factors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    50
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
50
Top 10%
Top 10%
Top 10%
hybrid