
Particle Swarm Optimization PSO is a well-known population-based optimization algorithm. Most often it is applied to optimize objective-based fitness functions that reward progress towards a desired objective or behavior. As a result, search increasingly focuses on higher-fitness areas. However, in problems with many local optima, such focus often leads to premature convergence that precludes reaching the intended objective. To remedy this problem in certain types of domains, this paper introduces Novelty-driven Particle Swarm Optimization NdPSO, which is motivated by the novelty search algorithm in evolutionary computation. In this method particles are driven only towards instances significantly different from those found before. By ignoring the objective this way, NdPSO can circumvent the problem of deceptive local optima. Because novelty search has previously shown potential for solving tasks in genetic programming, this paper implements NdPSO as an extension of the grammatical swarm method, which combines PSO with genetic programming. The resulting NdPSO implementation is tested in three different domains representative of those in which it might provide advantage over objective-driven PSO. That is, deceptive domains in which it is easy to derive a meaningful high-level description of novel behavior. In each of the tested domains NdPSO outperforms both objective-based PSO and random-search, demonstrating its promise as a tool for solving deceptive problems.
Particle Swarm Optimization, Deceptive Domains, Novelty Search, Premature Convergence, Evolutionary Computation, 004
Particle Swarm Optimization, Deceptive Domains, Novelty Search, Premature Convergence, Evolutionary Computation, 004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
