Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biochemical Journalarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biochemical Journal
Article . 2002 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Polyunsaturated fatty acids decrease the expression of sterol regulatory element-binding protein-1 in CaCo-2 cells: effect on fatty acid synthesis and triacylglycerol transport

Authors: Shubha Murthy; Shubha Murthy; F. Jeffrey Field; F. Jeffrey Field; Satya N. Mathur; Satya N. Mathur; Ella Born; +1 Authors

Polyunsaturated fatty acids decrease the expression of sterol regulatory element-binding protein-1 in CaCo-2 cells: effect on fatty acid synthesis and triacylglycerol transport

Abstract

Regulation of sterol regulatory element-binding proteins (SREBPs) by fatty acid flux was investigated in CaCo-2 cells. Cells were incubated with 1mM taurocholate with or without 250μM 18:0, 18:1, 18:2, 20:4, 20:5 or 22:6 fatty acids. Fatty acid synthase (FAS) and acetyl-CoA carboxylase mRNA levels and gene and protein expression of SREBPs were estimated. 18:2, 20:4, 20:5 and 22:6 fatty acids decreased the amount of mature SREBP-1 and mRNA levels of SREBP-1c, SREBP-1a, FAS and acetyl-CoA carboxylase. SREBP-2 gene or mature protein expression was not altered. Liver X receptor (LXR) activation by T0901317 increased gene expression of SREBP-1c, SREBP-1a, FAS and acetyl-CoA carboxylase without altering SREBP-2. 20:5, but not 18:1, prevented the full expression of SREBP-1c mRNA by T0901317. T0901317 increased SREBP-1 mass without altering the mass of mature SREBP-2. Although only 18:2, 20:4, 20:5 and 22:6 suppressed SREBP-1, acetyl-CoA carboxylase and FAS expression, all fatty acids decreased the rate of fatty acid synthesis. T0901317 increased endogenous fatty acid synthesis yet did not increase secretion of triacylglycerol-rich lipoproteins. In CaCo-2 cells, polyunsaturated fatty acids decrease gene and protein expression of SREBP-1 and FAS mRNA, probably through interference with LXR activity. Since all fatty acids decreased fatty acid synthesis, mechanisms other than changes in SREBP-1c expression must be entertained. Increased endogenous fatty acid synthesis does not promote triacylglycerol-rich lipoprotein secretion.

Related Organizations
Keywords

Dose-Response Relationship, Drug, Hydrocarbons, Fluorinated, Reverse Transcriptase Polymerase Chain Reaction, Anticholesteremic Agents, Fatty Acids, Immunoblotting, Gene Expression, Receptors, Cytoplasmic and Nuclear, DNA-Binding Proteins, Cholesterol, Eicosapentaenoic Acid, CCAAT-Enhancer-Binding Proteins, Fatty Acids, Unsaturated, Humans, RNA, Messenger, Caco-2 Cells, Fatty Acid Synthases, Acetyl-CoA Carboxylase, Apolipoproteins B, Plasmids

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    68
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
68
Top 10%
Top 10%
Top 10%
bronze