
In this study we aim to explore automatic methods that can detect online documents of low credibility, especially fake news, based on the style they are written in. We show that general-purpose text classifiers, despite seemingly good performance when evaluated simplistically, in fact overfit to sources of documents in training data. In order to achieve a truly style-based prediction, we gather a corpus of 103,219 documents from 223 online sources labelled by media experts, devise realistic evaluation scenarios and design two new classifiers: a neural network and a model based on stylometric features. The evaluation shows that the proposed classifiers maintain high accuracy in case of documents on previously unseen topics (e.g. new events) and from previously unseen sources (e.g. emerging news websites). An analysis of the stylometric model indicates it indeed focuses on sensational and affective vocabulary, known to be typical for fake news.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 101 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
