Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Physical Review Lett...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Physical Review Letters
Article . 2005 . Peer-reviewed
License: APS Licenses for Journal Article Re-use
Data sources: Crossref
MPG.PuRe
Article . 2005
Data sources: MPG.PuRe
versions View all 3 versions
addClaim

Discontinuous Unbinding Transitions of Filament Bundles

Authors: Kierfeld, J.; Kühne, T.; Lipowsky, R.;

Discontinuous Unbinding Transitions of Filament Bundles

Abstract

Bundles of semiflexible polymers such as actin filaments are studied theoretically. The bundle formation is governed by attractive filament interactions mediated by cross-linking sticker molecules. Using a combination of analytical arguments and Monte Carlo simulations, it is shown that the formation of bundles of parallel filaments requires a threshold concentration of linkers which becomes independent of the filament number for large bundles. The unbinding of bundles happens in a single, discontinuous transition. We discuss the behavior of the bundle thickness at and below the transition. In the bound phase, large bundles tend to segregate into sub-bundles due to slow kinetics. Our results are in qualitative agreement with experiments on F-actin in the presence of the cross-linking protein alpha-actinin.

Keywords

Polymers, Entropy, Models, Biological, Actins, Elasticity, Actin Cytoskeleton, Kinetics, Cross-Linking Reagents, Models, Chemical, Computer Simulation, Monte Carlo Method, Cytoskeleton

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 10%
Top 10%
Top 10%
bronze