Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Naturearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Nature
Article . 2004 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Nature
Article . 2004
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body

Authors: Dae Sung, Hwangbo; Boris, Gershman; Boris, Gersham; Meng-Ping, Tu; Michael, Palmer; Marc, Tatar;

Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body

Abstract

In Drosophila melanogaster, ageing is slowed when insulin-like signalling is reduced: life expectancy is extended by more than 50% when the insulin-like receptor (InR) or its receptor substrate (chico) are mutated, or when insulin-producing cells are ablated. But we have yet to resolve when insulin affects ageing, or whether insulin signals regulate ageing directly or indirectly through secondary hormones. Caenorhabditis elegans lifespan is also extended when insulin signalling is inhibited in certain tissues, or when repressed in adult worms, and this requires the forkhead transcription factor (FOXO) encoded by daf-16 (ref. 6). The D. melanogaster insulin-like receptor mediates phosphorylation of dFOXO, the equivalent of nematode daf-16 and mammalian FOXO3a. We demonstrate here that dFOXO regulates D. melanogaster ageing when activated in the adult pericerebral fat body. We further show that this limited activation of dFOXO reduces expression of the Drosophila insulin-like peptide dilp-2 synthesized in neurons, and represses endogenous insulin-dependent signalling in peripheral fat body. These findings suggest that autonomous and non-autonomous roles of insulin signalling combine to control ageing.

Related Organizations
Keywords

Neurons, Aging, Fat Body, Longevity, PTEN Phosphohydrolase, Brain, Forkhead Transcription Factors, Genes, Insect, Phosphoric Monoester Hydrolases, Receptor, Insulin, Survival Rate, Drosophila melanogaster, Organ Specificity, Stress, Physiological, Insect Hormones, Animals, Drosophila Proteins, Insulin, RNA, Messenger, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    873
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 0.1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
873
Top 0.1%
Top 1%
Top 0.1%
Upload OA version
Are you the author? Do you have the OA version of this publication?