Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ARUdAarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Modelling & Software
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Efficient multi-objective optimal design of water distribution networks on a budget of simulations using hybrid algorithms

Authors: di Pierro F.; Khu S. -T.; Savic D.; Berardi L.;

Efficient multi-objective optimal design of water distribution networks on a budget of simulations using hybrid algorithms

Abstract

The design of water distribution networks is a large-scale combinatorial, non-linear optimisation problem, involving many complex implicit constraint sets, such as nodal mass balance and energy conservation, which are commonly satisfied through the use of hydraulic network solvers. These problem properties have motivated several prior studies to use stochastic search optimisation, because these derivative-free global search algorithms have been shown to obtain higher quality solutions for large network design problems. Global stochastic search methods, however, require many iterations to be performed in order to achieve a satisfactory solution, and each iteration may involve running computationally expensive simulations. Recently, this problem has been compounded by the evident need to embrace more than a single measure of performance into the design process, since by nature multi-objective optimisation methods require even more iterations. The use of metamodels as surrogates for the expensive simulation functions has been investigated as a possible remedy to this problem. However, the identification of reliable surrogates is not always a viable alternative. Under these circumstances, methods that are capable of achieving a satisfactory level of performance with a limited number of function evaluations represent a valuable alternative. This paper represents a first step towards filling this gap. Two recently introduced multi-objective, hybrid algorithms, ParEGO and LEMMO, are tested on the design problem of a real medium-size network in Southern Italy, and a real large-size network in the UK under a scenario of a severely restricted number of function evaluations. The results obtained suggest that the use of both algorithms, in particular LEMMO, could be successfully extended to the efficient design of large-scale water distribution networks.

Countries
United Kingdom, Italy
Keywords

Evolutionary algorithms; Metamodels; Multi-objective optimisation; Surrogate modelling; Water distribution networks

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    93
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
93
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author? Do you have the OA version of this publication?