
doi: 10.3390/sym14040664
Standard methods used in the encryption and decryption process are implemented to protect confidential data. These methods require many arithmetic and logical operations that negatively affect the performance of the encryption process. In addition, they use private keys of a specific length, in addition to the fixed length of the data block used in encryption, which may provide the possibility of penetration of these methods, thus decreasing the level of security. In this research paper, a new method of digital image cryptography is introduced. This method is based on using a color image as an image_key to generate a sophisticated matrix private key (MPK) that cannot be hacked. The proposed method uses an initial state to set the required parameters, with secret information needed to generate the private key. The data-block size is variable, and the complicity of the MPK depends on the number of selected rounds and the data-block size. The proposed method is appropriate for publication in Symmetry because it employs a symmetrical complex matrix key to encrypt and decrypt digital images. The proposed method is simple yet very efficient in terms of throughput and scalability. The experiments show that the proposed method meets the quality requirements and can speed up the encryption–decryption process compared with standard methods, including DES, 3DES, AES, and Blowfish.
MPK; <i>image_key</i>; speedup; throughput; MSE; PSNR
MPK; <i>image_key</i>; speedup; throughput; MSE; PSNR
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
