Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Matrix Biologyarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Matrix Biology
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Matrix Biology
Article . 2009 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thrombospondin-1 and CD47 regulate blood pressure and cardiac responses to vasoactive stress

Authors: Daryl Despres; John M. Sipes; Jurgen Schnermann; Jeffrey S. Isenberg; David D. Roberts; William A. Frazier; Yan Qin; +1 Authors

Thrombospondin-1 and CD47 regulate blood pressure and cardiac responses to vasoactive stress

Abstract

Nitric oxide (NO) locally regulates vascular resistance and blood pressure by modulating blood vessel tone. Thrombospondin-1 signaling via its receptor CD47 locally limits the ability of NO to relax vascular smooth muscle cells and increase regional blood flow in ischemic tissues. To determine whether thrombospondin-1 plays a broader role in central cardiovascular physiology, we examined vasoactive stress responses in mice lacking thrombospondin-1 or CD47. Mice lacking thrombospondin-1 exhibit activity-associated increases in heart rate, central diastolic and mean arterial blood pressure and a constant decrease in pulse pressure. CD47-deficient mice have normal central pulse pressure but elevated resting peripheral blood pressure. Both null mice show exaggerated decreases in peripheral blood pressure and increased cardiac output and ejection fraction in response to NO. Autonomic blockade also induces exaggerated hypotensive responses in awake thrombospondin-1 null and CD47 null mice. Both null mice exhibit a greater hypotensive response to isoflurane, and autonomic blockage under isoflurane anesthesia leads to premature death of thrombospondin-1 null mice. Conversely, the hypertensive response to epinephrine is attenuated in thrombospondin-1 null mice. Thus, the matricellular protein thrombospondin-1 and its receptor CD47 serve as acute physiological regulators of blood pressure and exert a vasopressor activity to maintain global hemodynamics under stress.

Keywords

Immunoassay, Mice, Knockout, Blood Pressure, CD47 Antigen, Heart, Thrombospondin 1, Mice, Echocardiography, Heart Rate, Regional Blood Flow, Stress, Physiological, Cyclic AMP, Animals, Cyclic GMP, Signal Transduction, Skin

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    99
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
99
Top 10%
Top 10%
Top 10%
bronze