
The dynamic coefficients of friction for Twintex® commingled glass-polypropylene balanced plain-weave and unbalanced twill-weave fabrics at the tool/fabric and fabric/fabric interfaces during the composite thermostamping process are characterized. The effects of fabric velocity and pressure on the coefficients of friction under conditions similar to those during the thermostamping process are studied. A phenomenological friction model accounting for pressure and velocity dependence is developed based on the experimental results and implemented into the commercial finite element codes ABAQUS/Explicit and LS-DYNA via user-defined subroutines. The mechanical behavior of the fabric is modeled using a mesoscopic approach. The friction subroutines are validated with a finite element model of the experimental friction test. The forming of a hemispherical dome is simulated using ABAQUS and LS-DYNA. Punch forces and yarn stresses are compared between variable friction and constant friction models, and the simulation results justify the necessity for a variable friction model to accurately predict part quality.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 57 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
