
We present a simple space saving trick that applies to many previous algorithms for transitive closure and shortest paths in dynamic directed graphs. In these problems, an update can change all edges incident to a node. The basic queries on reachability and distances should be answered in constant time, but also paths should be produced in time proportional to their length. For: Transitive closure of Demetrescu and Italiano (FOCS 2000) Space reduction from O(n3) to O(n2), preserving an amortized update time of O(n2). Exact all-pairs shortest dipaths of King (FOCS 1999) Space reduction from O(n3) to O(n2√nb), preserving an amortized update time of O(n2√nb), where b is the maximal edge weight. Approximate all-pairs shortest dipaths of King (FOCS 1999) Space reduction from O(n3) to On2, preserving an amortized update time of On2. Several authors (Demetrescu and Italiano, FOCS 2000, and Brown and King, Oberwolfach 2000) had discovered techniques to give a corresponding space reduction, but these techniques could be used to show only the existence of a desired dipath, and could not be used to produce the actual path.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
