Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Optikarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Optik
Article . 2018 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Squeezing, mixed mode squeezing, amplitude squared squeezing and principal squeezing in a non-degenerate parametric oscillator

Authors: Mohosin Alam; Swapan Mandal; Mohamed Ridza Wahiddin;

Squeezing, mixed mode squeezing, amplitude squared squeezing and principal squeezing in a non-degenerate parametric oscillator

Abstract

Abstract The Hamiltonian and hence the equation of motion of the field operators of a non-degenerate parametric oscillator (NDPO) under the influence of classical pump are formulated. The coupled operator differential equations involving the signal and idler modes are decoupled at the expense of fourth order differential equations involving the c-numbers. Without using the rotating wave approximation, the analytical solutions of the field operators are obtained. These solutions are approximated up to the second orders in dimensionless coupling constant. We investigate the squeezing, mixed mode squeezing, amplitude-squared squeezing, and the principal squeezing of the thermal and coherent light coupled to the NDPO. By using the input composite number state, we establish that the percentage and the range (interaction time) of squeezing is considerably increased with the increase of the signal photon number. For initial composite number state, the amplitude squared squeezing for Ys quadrature is obtained at the cost of canonically conjugate Zs quadrature. The percentage of amplitude squared squeezing increases significantly with the increase of signal excitation (photon). The so-called normal squeezing and the principal squeezing are also indicated for the NDPO coupled with the initially prepared composite coherent states not in the composite number states. In spite of the shortcomings of the analytical solutions, we obtain squeezing, amplitude squared squeezing and other nonclassical effects which are unavailable under the rotating wave approximation. In order to give the feelings about the analytical results (expressions), we give some symbolic calculations relevant to the possible experimental situations.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!