Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ American Museum Novi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
American Museum Novitates
Article
License: CC BY
Data sources: UnpayWall
American Museum Novitates
Article . 2005 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A New Spalacotheriid Symmetrodont from the Early Cretaceous of Northeastern China

Authors: YAO-MING HU; RICHARD C. FOX; YUAN-QING WANG; CHUAN-KUI LI;

A New Spalacotheriid Symmetrodont from the Early Cretaceous of Northeastern China

Abstract

Symmetrodonts are Mesozoic mammals having lower molars with nearly symmetrical trigonids but lacking talonids. They appear to be stem members of the mammalian clade that led to extant tribosphenic mammals, but the fossil record of symmetrodonts is poor. Here we report a new genus and species of an acute-angled spalacotheriid symmetrodont, Heishanlestes changi, n.gen. and n.sp., represented by well-preserved lower jaws with teeth from the Early Cretaceous of northeastern China. The new mammal has four tightly spaced premolars and three morphological groups of lower molars, in which the first molar has an obtuse trigonid angle and the last two molars have a large neomorphic cusp in the center of the trigonid, a feature not seen in other mammals. Heishanlestes appears to be a specialized member of the spalacotheriid subfamily, Spalacolestinae, which is otherwise only known from North America. The animal probably used the premolars to crush its prey before shearing it with the molars.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 3
    download downloads 11
  • 3
    views
    11
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
22
Average
Top 10%
Average
3
11
gold
Related to Research communities