Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Fluid Mec...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Fluid Mechanics
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2022
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Unstable turbulent channel flow response to spanwise-heterogeneous heat fluxes: Prandtl's secondary flow of the third kind

Authors: Scott T. Salesky; M. Calaf; W. Anderson;

Unstable turbulent channel flow response to spanwise-heterogeneous heat fluxes: Prandtl's secondary flow of the third kind

Abstract

Turbulent secondary flows are defined as Prandtl's secondary flow of the first or second kind, the former produced by stretching and/or tilting of vorticity, the latter produced via spatial heterogeneity of Reynolds stresses. Both mechanisms are instantaneously active within inertia-dominated wall turbulence; Reynolds stress spatial heterogeneity is required for Reynolds-averaged secondary flows. Spanwise-variable surface roughness can induce turbulent stress spatial heterogeneity in the spanwise–wall-normal plane and provide sustenance for streamwise-aligned mean secondary flows. Herein, we demonstrate that turbulent secondary flows can also be sustained by spanwise variability in the surface heat flux in unstably stratified turbulent channels, defined hereafter as Prandtl's secondary flow of the third kind. Support for this mechanism is established with scaling arguments, while large-eddy simulation is used to model inertia-dominated channel turbulence responding to a lower boundary with uniform aerodynamic/hydrodynamic roughness but spanwise-variable surface heat flux. Transport equations for streamwise vorticity and turbulent kinetic energy, $k$ , outline the conditions needed for third-kind production: shear and buoyancy production over the elevated heat flux regions necessitates lateral entrainment of low- $k$ fluid, inducing mean counter-rotating secondary cells aligned such that upwelling and downwelling occur over the high and low heat flux regions, respectively. Buoyancy-driven production of $k$ alters aggregate flow response and thus is a distinctly different mechanism responsible for sustenance of secondary flows.

Related Organizations
Keywords

turbulent boundary layers, Fluid mechanics, turbulent convection

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%
hybrid