Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The primary and final effector mechanisms required for kinin-induced epithelial chloride secretion

Authors: A W, Cuthbert; C, Huxley;

The primary and final effector mechanisms required for kinin-induced epithelial chloride secretion

Abstract

The short-circuit current technique was used to examine the effects of N2-l-lysylbradykinin (LBK) on chloride secretion in the mucosae of the mouse intestine. It was found to be a potent chloride secretagogue in the mucosa lining the colon, jejunum, and cecum, as it is in most mammals, with 2 nM being sufficient to cause half-maximal secretion. The extent of the responses was in the order cecum > colon > jejunum. In cystic fibrosis (CF) null mice, with no CF transmembrane conductance regulator (CFTR) chloride channels, LBK caused no chloride secretion, but transporting activities for other ions were revealed. Introduction of the human CF gene into the genome of CF null mice at the zygote stage restored the chloride secretory activity of LBK, with only minor differences in potency. In mice in which the kinin B2receptor gene had been disrupted, LBK had no effect, whereas the responses to forskolin were unchanged. Thus the acute effects of kinins on chloride secretion depend uniquely on kinin B2receptors and CFTR chloride channels, which form the primary and final effector mechanisms of the secretory process.

Related Organizations
Keywords

Mice, Knockout, Cystic Fibrosis, Receptor, Bradykinin B2, Receptors, Bradykinin, Colforsin, Kallidin, Mice, Chlorides, Chloride Channels, Animals, Humans, Intestinal Mucosa, Chromosomes, Artificial, Yeast

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!