Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Plant and Cell Physi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Plant and Cell Physiology
Article . 2008 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Glycerophosphoryl Diester Phosphodiesterase-Like Proteins SHV3 and its Homologs Play Important Roles in Cell Wall Organization

Authors: Takashi Hirayama; Shimpei Hayashi; Kazuo Shinozaki; Rumi Tominaga; Takuji Wada; Toshiro Matsunaga; Tadashi Ishii; +1 Authors

The Glycerophosphoryl Diester Phosphodiesterase-Like Proteins SHV3 and its Homologs Play Important Roles in Cell Wall Organization

Abstract

Despite the importance of extracellular events in cell wall organization and biogenesis, the mechanisms and related factors are largely unknown. We isolated an allele of the shaven3 (shv3) mutant of Arabidopsis thaliana, which exhibits ruptured root hair cells during tip growth. SHV3 encodes a novel protein with two tandemly repeated glycerophosphoryl diester phosphodiesterase-like domains and a glycosylphosphatidylinositol anchor, and several of its paralogs are found in Arabidopsis. Here, we report the detailed characterization of mutants of SHV3 and one of its paralogs, SVL1. The shv3 and svl1 double mutant exhibited additional defects, including swollen guard cells, aberrant expansion of the hypocotyl epidermis and ectopic lignin deposits, suggesting decreased rigidity of the cell wall. Fourier-transform infrared spectroscopy and measurement of the cell wall components indicated an altered cellulose content and pectin modification with cross-linking in the double mutant. Furthermore, we found that the ruptured root hair phenotype of shv3 was suppressed by increasing the amount of borate, which is supposed to be involved in pectic polysaccharide cross-linking, in the medium. These findings indicate that SHV3 and its paralogs are novel important factors involved in primary cell wall organization.

Keywords

DNA, Bacterial, Arabidopsis Proteins, Phosphoric Diester Hydrolases, Molecular Sequence Data, Arabidopsis, Genes, Plant, Plants, Genetically Modified, Plant Roots, Hypocotyl, Plant Epidermis, Phenotype, Cell Wall, RNA, Plant, Spectroscopy, Fourier Transform Infrared, Microscopy, Electron, Scanning, Pectins, Point Mutation, Amino Acid Sequence, Cellulose

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    88
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
88
Top 10%
Top 10%
Top 10%
bronze