
arXiv: 1611.05967
In 1966, Gallai asked whether all longest paths in a connected graph share a common vertex. Counterexamples indicate that this is not true in general. However, Gallai's question is positive for certain well-known classes of connected graphs, such as split graphs, interval graphs, circular arc graphs, outerplanar graphs, and series-parallel graphs. A graph is $2K_2$-free if it does not contain two independent edges as an induced subgraph. In this short note, we show that, in nonempty $2K_2$-free graphs, every vertex of maximum degree is common to all longest paths. Our result implies that all longest paths in a nonempty $2K_2$-free graph have a nonempty intersection. In particular, it strengthens the result on split graphs, as split graphs are $2K_2$-free.
Vertex subsets with special properties (dominating sets, independent sets, cliques, etc.), dominating paths, longest paths, 05c38, FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), \(2K_2\)-free graphs, Paths and cycles
Vertex subsets with special properties (dominating sets, independent sets, cliques, etc.), dominating paths, longest paths, 05c38, FOS: Mathematics, Mathematics - Combinatorics, Combinatorics (math.CO), \(2K_2\)-free graphs, Paths and cycles
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
