
Pathogenesis and growth of three common women's cancers (breast, endometrium and ovary) are linked to estrogen. A single gene encodes the key enzyme for estrogen biosynthesis named aromatase, inhibition of which effectively eliminates estrogen production in the entire body. Aromatase inhibitors successfully treat breast cancer, whereas their roles in endometrial and ovarian cancers are less clear. Ovary, testis, adipose tissue, skin, hypothalamus and placenta express aromatase normally, whereas breast, endometrial and ovarian cancers overexpress aromatase and produce local estrogen exerting paracrine and intracrine effects. Tissue-specific promoters distributed over a 93-kb regulatory region upstream of a common coding region alternatively control aromatase expression. A distinct set of transcription factors regulates each promoter in a signaling pathway- and tissue-specific manner. In cancers of breast, endometrium and ovary, aromatase expression is primarly regulated by increased activity of the proximally located promoter I.3/II region. Promoters I.3 and II lie 215 bp from each other and are coordinately stimulated by PGE(2) via a cAMP-PKA-dependent pathway. In breast adipose fibroblasts exposed to PGE(2) secreted by malignant epithelial cells, PKC is also activated, and this potentiates cAMP-PKA-dependent induction of aromatase. Thus, inflammatory substances such as PGE(2) may play important roles in inducing local production of estrogen that promotes tumor growth.
Gene Expression Regulation, Neoplastic, Ovarian Neoplasms, Aromatase, Animals, Humans, Breast Neoplasms, Female, Gene Expression Regulation, Enzymologic, Endometrial Neoplasms
Gene Expression Regulation, Neoplastic, Ovarian Neoplasms, Aromatase, Animals, Humans, Breast Neoplasms, Female, Gene Expression Regulation, Enzymologic, Endometrial Neoplasms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 76 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
