
arXiv: 2203.04118
Cancer is a disease that occurs as a result of the uncontrolled division and proliferation of cells. Colon cancer is one of the most common types of cancer in the world. Polyps that can be seen in the large intestine can cause cancer if not removed with early intervention. Deep learning and image segmentation techniques are used to minimize the number of polyps that goes unnoticed by the experts during these interventions. Although these techniques perform well in terms of accuracy, they require too many parameters. We propose a new model to address this problem. Our proposed model requires fewer parameters as well as outperforms the state-of-the-art models. We use EfficientNetB0 for the encoder part, as it performs well in various tasks while requiring fewer parameters. We use partial decoder, which is used to reduce the number of parameters while achieving high accuracy in segmentation. Since polyps have variable appearances and sizes, we use an asymmetric convolution block instead of a classic convolution block. Then, we weight each feature map using a squeeze and excitation block to improve our segmentation results. We used different splits of Kvasir and CVC-ClinicDB datasets for training, validation, and testing, while we use CVC- ColonDB, ETIS, and Endoscene datasets for testing. Our model outperforms state-of-art models with a Dice metric of %71.8 on the ColonDB test dataset, %89.3 on the EndoScene test dataset, and %74.8 on the ETIS test dataset while requiring fewer parameters. Our model requires 2.626.337 parameters in total while the closest model in the state-of-the-art is U-Net++ with 9.042.177 parameters.
4 pages, in Turkish language, 2 figures, 2 tables
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Image and Video Processing (eess.IV), Computer Science - Computer Vision and Pattern Recognition, FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Image and Video Processing
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Image and Video Processing (eess.IV), Computer Science - Computer Vision and Pattern Recognition, FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Image and Video Processing
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
