Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Molecular Cellarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cell
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Molecular Cell
Article . 2010
License: Elsevier Non-Commercial
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Molecular Cell
Article . 2010 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Priming and Extending: A UbcH5/Cdc34 E2 Handoff Mechanism for Polyubiquitination on a SCF Substrate

Authors: Wu, Kenneth; Kovacev, Jordan; Pan, Zhen-Qiang;

Priming and Extending: A UbcH5/Cdc34 E2 Handoff Mechanism for Polyubiquitination on a SCF Substrate

Abstract

We describe a mechanistic model of polyubiquitination by the SCF(beta TrCP2) E3 ubiquitin (Ub) ligase using human I kappaB alpha as a substrate. Biochemical reconstitution experiments revealed that the polyubiquitination of I kappaB alpha began with the action of the UbcH5 E2 Ub-conjugating enzyme, transferring a single Ub to I kappaB alpha K21/K22 rapidly and efficiently. Subsequently, the Cdc34 E2 functioned in the formation of polyubiquitin chains. It was determined that a Ub fused at I kappaB alpha K21 acts as a receptor, directing Cdc34 for rapid and efficient K48-linked Ub chain synthesis that depends on SCF(beta TrCP2) and the substrate's N terminus. The I kappaB alpha-linked fusion Ub appears to mediate direct contacts with Cdc34 and the SCF's RING subcomplex. Taken together, these results suggest a role for the multifaceted interactions between the I kappaB alpha K21/K22-linked receptor Ub, the SCF's RING complex, and Cdc34 approximately S approximately Ub in establishing the optimal orientation of the receptor Ub to drive conjugation.

Related Organizations
Keywords

SKP Cullin F-Box Protein Ligases, Ubiquitination, Ubiquitin-Protein Ligase Complexes, Cell Biology, Anaphase-Promoting Complex-Cyclosome, I-kappa B Kinase, Substrate Specificity, Cell Line, Tumor, Ubiquitin-Conjugating Enzymes, Biocatalysis, Humans, RNA, Small Interfering, Molecular Biology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    117
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
117
Top 1%
Top 10%
Top 10%
hybrid