Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Cosmology...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Cosmology and Astroparticle Physics
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Apollo
Article . 2023
Data sources: Apollo
https://dx.doi.org/10.48550/ar...
Article . 2022
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
Apollo
Article . 2023
Data sources: Datacite
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cosmological distances with general-relativistic ray tracing: framework and comparison to cosmographic predictions

Authors: Macpherson, Hayley J;

Cosmological distances with general-relativistic ray tracing: framework and comparison to cosmographic predictions

Abstract

Abstract In this work we present the first results from a new ray-tracing tool to calculate cosmological distances in the context of fully nonlinear general relativity. We use this tool to study the ability of the general cosmographic representation of luminosity distance, as truncated at third order in redshift, to accurately capture anisotropies in the “true” luminosity distance. We use numerical relativity simulations of cosmological large-scale structure formation which are free from common simplifying assumptions in cosmology. We find the general, third-order cosmography is accurate to within 1% for redshifts to z ≈ 0.034 when sampling scales strictly above 100 h -1 Mpc, which is in agreement with an earlier prediction. We find the inclusion of small-scale structure generally spoils the ability of the third-order cosmography to accurately reproduce the full luminosity distance for wide redshift intervals, as might be expected. For a simulation sampling small-scale structures, we find a ∼ ±5% variance in the monopole of the ray-traced luminosity distance at z ≈ 0.02. Further, all 25 observers we study here see a 9–20% variance in the luminosity distance across their sky at z ≈ 0.03, which reduces to 2–5% by z ≈ 0.1. These calculations are based on simulations and ray tracing which adopt fully nonlinear general relativity, and highlight the potential importance of fair sky-sampling in low-redshift isotropic cosmological analysis.

Related Organizations
Keywords

Cosmology and Nongalactic Astrophysics (astro-ph.CO), 5101 Astronomical Sciences, FOS: Physical sciences, 51 Physical Sciences, 5107 Particle and High Energy Physics, Astrophysics - Cosmology and Nongalactic Astrophysics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
10
Top 10%
Average
Top 10%
Green
hybrid