Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ River Research and A...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
River Research and Applications
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
River Research and Applications
Article . 2016 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Integrating Hydrological Modelling and Ecosystem Functioning for Environmental Flows in Climate Change Scenarios in the Zambezi River (Zambezi Region, Namibia)

Authors: F. Martínez‐Capel; L. García‐López; M. Beyer;

Integrating Hydrological Modelling and Ecosystem Functioning for Environmental Flows in Climate Change Scenarios in the Zambezi River (Zambezi Region, Namibia)

Abstract

AbstractThe Zambezi‐Chobe wetlands in Namibia are of great international importance for trans‐boundary water management because of their remarkable ecological characteristics and the variety and magnitude of the ecosystem services provided. The main objective of this study is to establish the hydro‐ecological baseline for the application of environmental flow regimes (EFR). The specific objectives are: (i) the assessment of environmental flow components (EFC) in the current near‐natural hydrological conditions; (ii) the generation of future scenarios for climatic and socioeconomic changes; (iii) the estimation of the area–duration curves and estimated annual habitat during the inundation of the critical habitats for fisheries (mulapos), under the existing conditions and future scenarios; and (iv) to provide a framework for the future application of EFRs, based on hydrological and ecological processes. To make a sound analysis of the ecological implications, first we develop a conceptual framework of the linkages between the hydrological and biological processes concerning fish communities, because of the critical role of fisheries in the region. The EFCs in near‐natural hydrological conditions provide the basis for developing interim EFRs in the region, within the framework of an adaptive management of water resources. The future scenarios indicate a mitigation of the flow variability; and, in the worst‐case scenario, the reduction of the maximum flow and inundated area of themulaposwould result in a reduction of the estimated annual habitat of 22%. This means a reduction in the spawning habitats for quiet‐water species, in the food resources for fry and juvenile fish and a consequent reduction in fish stocks. Furthermore, the habitat loss during low events is similar and greater under both scenarios, at ca. 35%. Here we corroborate that the EFCs and their variability may become the building blocks of flow‐ecology models that lead to environmental flow recommendations, monitoring and research programmes and flow protection activities. Copyright © 2016 John Wiley & Sons, Ltd.

Keywords

Habitat duration curves, Range of variability approach, River flow variability, Wetlands, Water resources management, Zambezi river, Climate change, Environmental flow regime, TECNOLOGIA DEL MEDIO AMBIENTE

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 79
    download downloads 148
  • 79
    views
    148
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
13
Top 10%
Top 10%
Average
79
148
Green
hybrid