Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Infection and Immuni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Infection and Immunity
Article . 2012 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Involvement of Signal Regulatory Protein α, a Negative Regulator of Toll-Like Receptor Signaling, in Impairing the MyD88-Independent Pathway and Intracellular Killing of Burkholderia pseudomallei-Infected Mouse Macrophages

Authors: Pankaj Baral; Pongsak Utaisincharoen;

Involvement of Signal Regulatory Protein α, a Negative Regulator of Toll-Like Receptor Signaling, in Impairing the MyD88-Independent Pathway and Intracellular Killing of Burkholderia pseudomallei-Infected Mouse Macrophages

Abstract

ABSTRACT The facultative intracellular Gram-negative bacterium Burkholderia pseudomallei is the causative agent of melioidosis and is known for its ability to evade the Toll-like receptor (TLR)-mediated innate immune response. Previously it has been demonstrated that this bacterium was able to suppress the MyD88-independent pathway and can survive macrophage intracellular killing. However, the underlying mechanisms responsible for the suppression of this pathway are not fully understood. In the present study, we showed that both living and heat-killed B. pseudomallei bacteria restrict the TLR signaling response, particularly macrophage inducible nitric oxide synthase (iNOS) expression, by preventing downregulation of constitutively expressed signal regulatory protein α (SIRPα) molecule, a known negative regulator of TLR signaling. In contrast, a lipopolysaccharide (LPS) mutant of B. pseudomallei , a less virulent strain, was able to downregulate SIRPα expression in mouse macrophages. However, depletion of constitutively expressed SIRPα was able to induce the gene expression downstream of TLR signaling pathways (particularly the MyD88-independent pathway), such as that of the iNOS gene, leading to enhanced macrophage intracellular killing of B. pseudomallei . Induction of gene expression was consistent with the enhanced degradation pattern of IκBα with SIRPα depletion. Additionally, the downregulation of SIRPα expression with upregulation of iNOS was observed when the macrophages were pretreated with gamma interferon (IFN-γ) prior to the infection, suggesting that the enhanced intracellular killing of bacteria by IFN-γ is associated with the decreased SIRPα expression. Altogether our findings demonstrate that B. pseudomallei evades macrophage intracellular killing by preventing the downregulation of SIRPα that results in the inhibition of gene expression downstream of the MyD88-independent pathway.

Related Organizations
Keywords

Burkholderia pseudomallei, Macrophages, Toll-Like Receptors, Cell Line, Mice, Gene Expression Regulation, Melioidosis, Myeloid Differentiation Factor 88, Animals, Receptors, Immunologic, Immune Evasion, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
bronze